
In issue 4 we looked at Windows
callbacks that were called when

our application was the current
task. This time we will look at the
more interesting cases of callbacks
that are called when any task may
be active. To start with we are
going to focus on some Borland
Database Engine (BDE) callbacks
which are installed using the BDE’s
DbiRegisterCallBack routine.

If you have not got hold of the
BDE documentation, you might
care to download the BDE help file
which can be found in BDEHEL.ZIP
(217Kb) in Library 6 of the DELPHI
forum on Compuserve. Also, in
case you are unaware, an updated
version of the BDE itself (which
shipped with Visual dBASE for
Windows 5.5 and the Delphi 1.02
update) is available as file
BDEDEMO.ZIP in Library 4 of the
BDEVTOOLS forum on Compu-
Serve, where the BDE is normally
supported.

The interface sections of the
units that declare all the BDE stuff
can be found in the directory
\DELPHI\DOC, as files DBIPROCS.INT,
DBITYPES.INT and DBIERRS.INT. In
DBITYPES.INT there is a callbacks
section from lines 959 to 1065. The
available BDE callbacks are listed
in the CBType enumerated type;
although one that is marked as
reserved, cbReserved21, later turns
out to be redefined as cbServerCall.
This callback type is actually used
in any Delphi application using the
DB unit (ie applications using the
database components); it is used
in the Session component to set up
the SQL mouse cursor for server-
based operations.

The new 32-bit BDE coming from
Borland adds new callbacks which
are triggered when a login occurs,
when a delayed update occurs,
when fields get recalculated and
upon a trace event. However,
Delphi 2.0’s BDE callback support
is rather changed (and markedly

Please Call Later...
Callbacks in Windows and the Borland Database Engine (Part 2)
by Brian Long

improved) so we’ll stick to 16-bits
only in this article.

The first callback we will investi-
gate is cbTableChanged. If we install
one of these for a Paradox table,
any modifications made to the
table by any other BDE-based ap-
plication cause the callback to be
executed. This allows your applica-
tion to refresh its view of a table
only when it is needed, rather than
in the normal way, which is peri-
odically via a timer component.

There are two versions of the
program that implement this call-
back (see Figure 1) on the disk:
CHANGE.DPR and CHANGE2.DPR.
The former uses the assembly
prolog which was discussed in the
previous article and is conse-
quently tied to only running cor-
rectly for the first instance.

Subsequent invocations would talk
to the first one’s data segment
instead of their own. To allow this
program to be a valid item to add
on the disk, I have added some
code based on a technique from
Borland UK’s Roy Nelson to restrict
it to only running once. If you try
and launch it again, it detects that
there is a previous instance and
switches to it instead of continuing.
The important point about this
code is that many suggestions of
similar routines do not handle all
Delphi startup possibilities
correctly.

To expound, the general
functionality of a single instance
application is that a second
instance should cause the first
instance’s main window to appear
on the desktop. This means

➤ Figure 1: Catching table changes

➤ Figure 2: The general progress callback

36 The Delphi Magazine Issue 5

bringing it to the front if it is behind
other windows, but also restoring
it if it is minimised. Normally, when
a Delphi application is minimised,
the icon is actually the iconised
version of the normally hidden
Application object’s window: all
other windows are hidden.
However, if the application starts
off life with the main form having a
wsMinimized WindowState property,
the icon you see when you launch
the application is the main form’s
icon (you can use WinSight to
verify all this). This explains why,
in Windows 95, when you restore a
minimised Delphi application, it
just appears rather than enlarging
from the icon bar: the windows are
being un-hidden rather than
restored. The different icons cause
headaches for the previous
instance code, but this version

seems to take account of all
obvious possibilities.

The source for the unit for the
single instance version is in Listing
1. The code to register the callback
is in the form’s OnCreate event
handler after the check for another
instance, and it is un-registered in
the form’s OnDestroy handler. This
ensures it is active throughout the
useful part of the program’s
lifespan. FormCreate ensures we
don’t block any existing handler by
storing its details in a form data
field called FOldCallBack, just like
the VCL Session object does. Using
FOldCallBack allows the old
callback to be chained onto from
our callback routine. This field’s
type, TCallBack, has already been
declared in the DB unit.

The actual registration specifies
the handle of the table we wish to
be kept informed about, a 32-bit
value that we wish to be passed to

the callback for our own purposes
(the table object reference in this
case) and some reference to the
callback routine itself. You may re-
call from the previous article that
unlike many callbacks, those that
can be called when any arbitrary
task is active cannot be referred to
simply by their name. This is be-
cause the data segment will not be
set to that required by the routine,
but that of the active task (due to
the smart callback option, which
needs to be on in a VCL applica-
tion). The remedy used here is the
aforementioned assembler thunk.
The code in ChangeFunctionThunk
causes DS to be set up by placing
the correct value into AX and jump-
ing over the callback prolog
instruction which would otherwise
write the wrong value into AX.

Now onto the callback itself. It
sets the return value to a safe value
defined in DBITYPES.INT and then

unit Changeu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls, Grids,
 DBGrids, DB, DBTables;
const wm_TableChanged = wm_User + 57;
type
 TForm1 = class(TForm)
 Table1: TTable;
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 procedure FormDestroy(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 private { Private declarations }
 FOldCallBack: TCallBack;
 FChangeFunctionThunk: TFarProc;
 public { Public declarations }
 procedure WMTableChanged(var Msg: TMessage);
 message wm_TableChanged;
 end;
var Form1: TForm1;
implementation
uses DbiTypes, DbiProcs;
{$R *.DFM}

function FindPrevInstanceProc(Wnd: HWnd; UserData:
 Longint): Bool; export;
var WndClass, WndText: array[0..255] of char;
begin
 Result := True;
 { Concentrate solely on our EXE }
 if GetWindowWord(Wnd, gww_HInstance) = HPrevInst
 then begin
 GetClassName(Wnd, WndClass, Pred(SizeOf(WndClass)));
 GetWindowText(Wnd, WndText,
 Succ(Length(Application.MainForm.Caption)));
 { Normally first window will be Application’s but if
 app started minimised, it will be main form’s }
 if (StrPas(WndClass) = Application.ClassName) or
 ((StrPas(WndText) = Application.MainForm.Caption)
 and IsIconic(Wnd)) then begin
 { This technique is used by the VCL - post a
 message then bring the window to the top, before
 the message gets processed }
 PostMessage(Wnd, wm_SysCommand, sc_Restore, 0);
 BringWindowToTop(Wnd);
 Halt;
 end;

 end;
end;

function ChangeFunction(ecbType: CBType; iClientData:
 Longint; var CbInfo: Pointer): CBRType; export;
begin
 Result := cbrUseDef;
 if ecbType = cbTableChanged then
 PostMessage(Application.MainForm.Handle,
 wm_TableChanged, 0, iClientData);
 with Form1.FOldCallBack do
 if ChainedFunc <> nil then Result :=
 pfDBICallBack(ChainedFunc)(cbTableChanged,
 Data, Buffer)
end;

procedure ChangeFunctionThunk; assembler;
asm
 mov ax, seg @Data
 { Bypass the smart callback instruction }
 jmp ChangeFunction + 3
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 if HPrevInst <> 0 then
 EnumWindows(@FindPrevInstanceProc, 0);
 FChangeFunctionThunk := @ChangeFunctionThunk;
 with FOldCallBack do
 DbiGetCallBack(nil, cbTableChanged, Data, BufLen,
 Buffer, @ChainedFunc);
 DbiRegisterCallBack(Table1.Handle, cbTableChanged,
 Longint(Table1), 0, nil,
 pfDbiCallback(FChangeFunctionThunk));
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 DbiRegisterCallBack(Table1.Handle, cbTableChanged,
 0, 0, nil, nil);
end;

procedure TForm1.WMTableChanged(var Msg: TMessage);
begin
 if MessageDlg(TTable(Msg.LParam).TableName +
 ’ has changed - refresh?’, mtConfirmation,
 [mbYes, mbNo], 0) = mrYes then
 TTable(Msg.LParam).Refresh;
end;
end.

➤ Listing 1

January 1996 The Delphi Magazine 37

checks that it is the appropriate
type of callback.

The next thing it does might
seem a bit odd. It sends a message
to the main form window, which is
picked up by a message handler.
The point of this is that I want to
put up a message box to the user,
informing them that the table has
been updated by someone, and
check whether they wish to refresh
the table (see Figure 1). As men-
tioned in the last issue, causing
other code to execute that has
been made exportable with the ex-
port keyword is a bad idea.
ShowMessage and MessageDlg do this.
The problem is that their prolog
code will still contain the instruc-
tion which will set the data seg-
ment to that of the active task,
undoing the work of the thunk
code. The usual result of calling
MessageDlg in this type of callback
is a GPF, since some code at some
point in the VCL will refer to
something in the data segment (the
wrong data segment). Sending a
message to the form will cause the
right data segment to be set up all
round because a task switch will
occur before the message handler
starts. The message has the user-
defined callback data passed along
to it as the long parameter, which
means that the message handler
can access the table object in
question by typecasting Msg.LParam
back to a TTable.

During a BDE callback, no BDE
operations should be performed.
This is why the message (which
possibly causes a refresh) is sent
with PostMessage instead of
SendMessage – SendMessage causes
the message to be handled immedi-
ately, whereas PostMessage
doesn’t, allowing the callback to
finish first.

Remember that this type of
callback is called in the context of
whatever task is running. This
means that if the callback causes a
GPF (eg by calling ShowMessage di-
rectly), it will be reported as com-
ing from the application that was
active at the time the callback was
started, not from your application,
which was the real culprit.

The CHANGE2 project is not
restricted to single instances. It

uses
 ThunkU, ...
...
procedure TForm1.FormCreate(Sender: TObject);
begin
 FChangeFunctionThunk := NewMakeProcInstance(@ChangeFunction, HInstance);
...

➤ Listing 2

unit ThunkU;
{$ifndef WINDOWS} ’This is suitable only for 16-bit Windows’ {$endif}
interface
uses WinTypes;
function NewMakeProcInstance(Proc: TFarProc; Instance: THandle): TFarProc;
procedure NewFreeProcInstance(Proc: TFarProc);

implementation
uses WinProcs, SysUtils;
type
 { Used by NewMakeProcInstance and NewFreeProcInstance }
 PProcInst = ^TProcInst;
 TProcInst = record
 Mov: Byte; DSeg: Word; { mov ax, seg @Data }
 Jmp: Byte; ProcAddr: Pointer; { jmp Addr + 3 }
 DataSelector: Word; { saved data selector }
 end;

function NewMakeProcInstance(Proc: TFarProc; Instance: THandle): TFarProc;
begin
 Result := GlobalAllocPtr(gmem_Share or gmem_Fixed, SizeOf(TProcInst));
 with PProcInst(Result)^ do begin
 Mov := $B8;
 DSeg := Instance;
 Jmp := $EA;
 ProcAddr := Proc;
 Inc(PtrRec(ProcAddr).Ofs, 3);
 DataSelector := PtrRec(Result).Seg;
 { Note Delphi help is out of date, shouldn’t free the code selector }
 PtrRec(Result).Seg := AllocDSToCSAlias(DataSelector);
 end;
end;

procedure NewFreeProcInstance(Proc: TFarProc);
begin
 PtrRec(Proc).Seg := PProcInst(Proc)^.DataSelector;
 GlobalFreePtr(Proc);
end;
end.

➤ Listing 3

uses a different way of setting up
the data segment, by using what is
effectively a re-implementation of
MakeProcInstance and FreeProc-
Instance, defined in the
ThunkU.PAS unit. Yes, I know I said
before that MakeProcInstance and
all that goes with it was history, but
to put inter-task callbacks into an
application rather than a DLL
requires getting your hands dirty.
Listing 2 shows the bits in
CHANGE2U.PAS that are different
from CHANGEU.PAS, and Listing 3
shows the ThunkU unit. What
NewMakeProcInstance does is to
allocate a block of memory big
enough to hold the thunk and fill it
up with appropriate instructions to
set up the right data segment and
jump past the “bad” (in the context
of inter-task callbacks) smart

callback instruction. NewFree-
ProcInstance will free the thunk
memory. You may notice that one
of NewMakeProcInstance’s parame-
ters is an instance handle, as with
MakeProcInstance; in Windows 3.x
an instance handle is the data seg-
ment value. When we call the call-
back registration routine, we pass
the address of the thunk instead of
the address of the target routine,
with an appropriate typecast.

The other BDE callback we will
look at is the general progress
callback. When performing a long
job, like a batch move (that the BDE
has control over: in other words on
local data tables rather than re-
mote SQL tables), the BDE calls a
cbGenProgress callback periodically
with information on how the job is
getting along.

38 The Delphi Magazine Issue 5

The PROGRESS.DPR project on
the disk contains an application
that shows this working in a couple
of ways. For the application to run,
you will need to copy the empty
example tables, TABLE.DB and
TABLE2.DB, into your directory
\DELPHI\DEMOS\DATA (ie the alias
DBDEMOS). Listing 4 shows the
code for this project’s unit. You’ll
notice that apart from a few more
interface components, it is very
similar to the previous example.
There is an extra data structure for
a cbGenProgress callback that needs

to be given to the callback registra-
tion routine. The CBProgressDec
data field of the form, FProgressBuf,
will be filled with information for
the callback to use.

Figure 2 shows the program
running. You’ll notice that there is
a button to fill the first table with
5000 records of random values, a
button to batch move the first table
to the other and another button to
empty both tables again. The idea
is that periodically through the
batch move, the callback gets
triggered. Additionally, there is a
button to execute a query and
again, during the processing of

this, the callback is invoked. The
callback sends a message to the
form to do some user-interface
interaction, checking if the user
wishes to carry on with the opera-
tion. If yes, the message handler
returns a value understood by the
BDE to mean ‘carry on’, if not it
returns a value understood to
mean ‘stop this operation’. The
callback itself receives this
message return value as the result
of the call to SendMessage and sets
its own return value accordingly.

With this program the message
parameters do not include the
table object, because the progress

unit Progresu;
interface
uses
 ThunkU, SysUtils, WinTypes, WinProcs, Messages,
 Classes, Graphics, Controls, Forms, Dialogs, StdCtrls,
 Grids, DBGrids, DB, DBTables, DbiTypes, DbiProcs;
const wm_GenProgress = wm_User + 58;
type
 TForm1 = class(TForm)
 Table1: TTable;
 DataSource1: TDataSource;
 DBGrid1: TDBGrid;
 FillBtn: TButton;
 CopyBtn: TButton;
 Table2: TTable;
 DBGrid2: TDBGrid;
 DataSource2: TDataSource;
 EmptyBtn: TButton;
 QueryBtn: TButton;
 Query1: TQuery;
 procedure FormDestroy(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure EmptyBtnClick(Sender: TObject);
 procedure FillBtnClick(Sender: TObject);
 procedure CopyBtnClick(Sender: TObject);
 procedure QueryBtnClick(Sender: TObject);
 private { Private declarations }
 FOldCallBack: TCallBack;
 FProgressBuf: CBProgressDesc;
 FProgressFunctionThunk: TFarProc;
 public { Public declarations }
 procedure WMGenProgress(var Msg: TMessage);
 message wm_GenProgress;
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
{$S-} { turn stack checking off }
function ProgressFunction(ecbType: CBType;
 iClientData: Longint; var CbInfo: Pointer):
 CBRType; export;
begin
 Result := cbrUseDef;
 if ecbType = cbGenProgress then
 Result :=
 CBRType(SendMessage(Application.MainForm.Handle,
 wm_GenProgress, 0, Longint(@Form1.FProgressBuf)));
 with Form1.FOldCallBack do
 if ChainedFunc <> nil then Result :=
 pfDBICallBack(ChainedFunc)(cbGenProgress,
 Data, Buffer)
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 try
 Table1.Exclusive := True;
 Table1.Open;
 Table2.Exclusive := True;
 Table2.Open;
 except
 on EDatabaseError do
 MessageDlg(’Can’’t find those tables’, mtError,
 [mbOk], 0);
 end;
 FProgressFunctionThunk :=
 NewMakeProcInstance(@ProgressFunction, HInstance);
 with FOldCallBack do
 DbiGetCallBack(nil, cbGenProgress, Data, BufLen,
 Buffer, @ChainedFunc);

 DbiRegisterCallBack(nil, cbGenProgress, 0,
 SizeOf(FProgressBuf), @FProgressBuf,
 pfDbiCallBack(FProgressFunctionThunk));
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 DbiRegisterCallBack(nil, cbGenProgress,
 0, 0, nil, nil);
 NewFreeProcInstance(FProgressFunctionThunk);
end;
procedure TForm1.WMGenProgress(var Msg: TMessage);
var Progress: String;
begin
 with pCBProgressDesc(Msg.LParam)^ do
 if iPercentDone <> -1 then
 Progress := IntToStr(iPercentDone)
 else
 Progress := StrPas(szMsg);
{$define INTERACTIVE}
{$ifdef INTERACTIVE}
 case MessageDlg(Progress + ’. Continue?’,
 mtConfirmation, [mbYes, mbNo], 0) of
 mrYes : Msg.Result := Longint(cbrContinue);
 mrNo : Msg.Result := Longint(cbrAbort);
 end;
{$else}
 Caption := Progress;
{$endif}
end;
procedure TForm1.EmptyBtnClick(Sender: TObject);
begin
 Table1.EmptyTable;
 Table2.EmptyTable;
end;
procedure TForm1.FillBtnClick(Sender: TObject);
var Loop: Longint;
const NumRecs = 5000;
begin
 Screen.Cursor := crSQLWait;
 with Table1 do begin
 DisableControls;
 for Loop := RecordCount + 1 to RecordCount + NumRecs
 do begin
 Append;
 Fields[0].AsInteger := Random(High(SmallInt));
 Fields[1].AsInteger := Random(High(SmallInt));
 Post;
 Caption := ’Adding record ’ + IntToStr(Loop) +
 ’ of ’ + IntToStr(NumRecs);
 end;
 First;
 EnableControls;
 end;
 Screen.Cursor := crDefault;
 Caption := ’Copy the table to see the callback’;
end;
procedure TForm1.CopyBtnClick(Sender: TObject);
begin
 Table2.BatchMove(Table1, batAppend);
 Table1.First;
end;
procedure TForm1.QueryBtnClick(Sender: TObject);
begin
 Query1.Close;
 Query1.Open;
end;
end.

➤ Listing 4

January 1996 The Delphi Magazine 39

callback is registered with a value
of nil, rather than a particular
table handle. This registers the
callback for the entire BDE session
rather than one specific table. The
information passed along with the
message this time is the address of
the progress buffer in the long
parameter. The message handler
can get access to the information
given by the BDE by typecasting
Msg.LParam into a CBProgressDesc
pointer and de-referencing it. It is
possible for a progress callback to
get either numeric information
(a percentage) or textual informa-
tion (an absolute value) in the
CBProgressDesc record. As I under-
stand it, the former is only ob-
tained for operations where the
BDE knows how much work there
is to do right from the start (it
would make sense that way).

The program has conditional
compilation to change what hap-
pens in the callback’s associated
message handler. Currently it is set
up to interrogate the user when the
callback fires, but removing the

$DEFINE directive will automate
what goes on, simply writing the
information to the form’s caption.

It is important to bear in mind
that, in a similar fashion to DLL
routines operating on the caller’s
stack, your callback will also
execute on someone else’s stack
(usually the active task’s). Some
system callbacks, like the ToolHelp
notification callbacks (which we
have yet to investigate), in particu-
lar the segment freeing and module
freeing notifications, are called
from very sensitive places in
Windows and you can end up with
next to no stack to play with. On
top of the small stack you may be
operating on, it is important to
ensure stack checking is not on
whilst the callback is executing: it’s
not your stack so the stack check
code is not appropriate.

With all the considerations for
inter-task callbacks and bouncing
back to the first instance where
needed, it seems I have run out of
room. Perhaps we’ll come back to
look at 32-bit BDE callbacks when

Delphi 2.0 is shipping, but next
time we’ll look into the 16-bit
Windows inter-task callbacks
(there aren’t any inter-task call-
backs in the Win32 API, so far as I
know). Experiment with care, and
ThunkU for your time...

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

